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Turbulent electron transport in edge pedestal by electron temperature
gradient turbulence
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We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode
plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of
electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-
resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence
becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma
current dependence results in a novel confinement scaling inside the pedestal region. It is also
shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density
pedestal formation. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4829673]

I. INTRODUCTION

Understanding turbulent transport of magnetically con-
fined plasmas is the major scientific effort in fusion plasma
physics. In particular, elucidation of the transport process
occurring in the edge transport barriers (edge pedestal) in high
(H)-mode plasmas1 is an urgent issue in contemporary fusion
research due to the impact of the pedestal on fusion perform-
ance. Presently, H-mode operation is the baseline plasma sce-
nario in International Thermonuclear Experimental Reactor
(ITER).2 Turbulent transport in magnetically confined plas-
mas is driven by micro-instabilities. For the past decades,
significant progress has been made in understanding the
physics of ion thermal transport channel in magnetically con-
fined plasmas. In contrast to these achievements, however,
some aspects of turbulent transport in electron and particle
channels still remain to be elucidated. Representative candi-
dates as possible drivers for turbulent electron thermal trans-
port include the electrostatic trapped electron mode (TEM)3,4

and the electron temperature gradient (ETG) mode.5,6 In terms
of the mixing length argument, the radial correlation length
for TEM is the order of ion Larmor radius (qi) scale, while
that of the ETG mode is electron Larmor radius (qe).

In H-mode plasmas, drift instabilities on qi scales, such
as ion temperature gradient modes (ITG) and TEM, are
quenched due to the development of strong E! B shear7 as
the edge pedestal develops. The ETG mode is then likely to
be the dominant turbulence driver giving rise to residual
turbulence in the edge pedestal. Besides ETG turbulence,
kinetic ballooning modes (KBM)8,9 have been invoked as a
possible turbulence driver in the edge pedestal. In the edge
pedestal, both modes may co-exist when the onset condition
of KBM is met. We will discuss a possible implication of
this in Sec. IV. The main goal of this Letter is to elucidate
electron transport in the edge transport barrier due to ETG
turbulence.

Anomalous electron transport has shown some puzzling
phenomena for the past years, dated back to early tokamak
experiments. To explain the Alcator scaling of the energy

confinement time (sE) in which sE in Ohmically heated toka-
mak plasmas is proportional to the operating density,
Ohkawa first proposed a conjecture that radial electron ther-
mal transport may follow the electron skin depth (i.e.,
ks ¼ c=xpe, xpe the electron plasma frequency, c the speed
of light) scale, rather than qe scale, due to some electromag-
netic effects.10 An attempt to elucidate the physics of ks

scale transport was made by Horton et al. based on ETG tur-
bulence.6 In this model, the appearance of the radial correla-
tion length approaching to ks scale is attributed to the inverse
cascade process in the high frequency, nonlinear electromag-
netic regime. More recently, nonlinear gyrokinetic ETG
simulations have shown the presence of radially extended
elliptical cells—like streamers, whose radial length scale is
much longer than the poloidal correlation length (i.e.,
Dx # Dy $ qe).11,12 They can enhance radial electron trans-
port significantly,11 thereby providing a potential explanation
of anomalous electron transport in tokamak plasmas in
accordance with experimental observations. The other
puzzling phenomenon also comes from gyrokinetic ETG
simulations. In these simulations, a sudden jump of electron
thermal conductivity has been observed in magnetic shear
scans, without noticeable changes of linear characteristics of
ETG modes.13,14

Interestingly, electromagnetic effects (such as magnetic
flutter) are reported to be weak in these gyrokinetic ETG
simulations. A natural question is then whether electrostatic
ETG turbulence can give rise to electron thermal transport
featuring correlations longer than qe and sometimes showing
a jump of electron heat flux. The goal of this paper is to
provide a simple theoretical answer for this question and to
discuss its implications to contemporary experiments.

In this paper, we make analytical quasilinear analyses of
the ETG mode to evaluate electron thermal and particle
transport in the pedestal of H-mode plasmas. We show that
the Ohkawa scaling of electron thermal transport arises
under certain conditions, which are relevant to edge pedestal
region. We find that a jump of electron thermal conductivity
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is possible near the transition condition where electron trans-
port scaling undergoes a change from qe to ks scales. Our
calculations also show possible roles of ETG turbulence in
pedestal dynamics, including edge localized mode (ELM)
bursts and the acceleration of density pedestal formation.

The rest of the paper is organized as follows. In Sec. II,
we describe the basic model equations. In particular, we cal-
culate the nonadiabatic ion and impurity responses due to
wave-particle resonant interactions. In Sec. III, we derive
quasilinear transport coefficients driven by ETG turbulence.
It will be shown that ETG turbulence yields a novel confine-
ment scaling in the pedestal. A thermoelectric particle pinch
driven by ETG turbulence is also discussed. We conclude
this paper in Sec. IV with a brief summary of main results
and some discussions.

II. MODEL EQUATIONS

The main goal of this paper is to calculate quasi-linear
electron thermal and particle fluxes driven by ETG modes
under the assumption that qi-scale modes are suppressed
by strong ~E ! ~B shear. To perform these calculations, we
re-examine the linear characteristics of the ETG mode in the
edge pedestal of H-mode plasmas. ETG modes satisfy the
following wave number and frequency ordering: kx < ky,
kyqe % 1, qe < kx

&1, k?ci $ jxj ' x( > kjjce, where x; y
represent radial and poloidal flux tube co-ordinates, kx,
ky; kjj are the radial, poloidal, and parallel (along the mag-
netic field) wave vectors, x is the characteristic frequency of
the mode, qj is the Larmor radius of the species j, cj is the
thermal velocity, and Xj is the cyclotron frequency: qj

¼ cj=Xj, cj ¼
ffiffiffiffiffiffiffiffiffiffiffi
Tj=mi

p
, Xj ¼ eB=mjc, j ¼ ðe; i; IÞ,

x( ¼ kyv(e, v(e ¼ kyqece=Ln, and x(T ¼ gex( with ge

¼ Ln=LTe and Ln
&1 ¼ j& d ln n=drj.

A. Ion and Impurity dynamics

We start our analysis from the ion dynamics in ETG re-
gime. Usually, ions are un-magnetized and adiabatic in ETG
dynamics because the perpendicular phase velocity of the
ETG mode is smaller than the ion thermal velocity (i.e.,
x=k? < cI ' ci). This condition is well satisfied in L-mode
and in core regions of H-mode plasmas where the density
profiles are relatively flat. In the edge pedestal, however, the
density scale length is a few percent of the minor radius (i.e.,
Ln + 0:03 a). Then, ions and impurities can resonate with
ETG modes, resulting in the deviation from the adiabaticity
condition.

We consider un-magnetized and collisionless ion and
impurities in ETG dynamics. In the limit k?ci;I ' jxj, ETG
mode resonates with background ions, which results in devi-
ation of ions from Boltzmann condition. This non-adiabatic
ion response can be determined by drift kinetic equation

@~f j

@t
þ ~V? -

@~f j

@~x
þ Ze

mJ
dE? -

@f0j

@~V
¼ 0: (1)

Assuming Maxwellian equilibrium distribution functions for
ions and impurities in one dimension, f0i ¼ ni0ðmi=2pTiÞ1=2

exp ð&V2
y=V2

thiÞ, and f0I ¼ nI0ðmI=2pTIÞ1=2exp ð&V2
y=V2

thIÞ,

where V2
thi ¼ 2Ti=mi, V2

thI ¼ 2TI=mI; and substituting them
into Eq. (1), the fluctuating ion and impurity distributions are
given by

~f i ¼ &si
~/

Vy

Vy & x=ky
f0i; (2)

~f I ¼ &sIZ~/
Vy

Vy & x=ky
f0I: (3)

The ion density fluctuation can be written as

~ni ¼
1

ni0

ð
~f i dV?

¼ & si
~/

p1=2Vthi

ð
dVy

Vy

Vy & x=ky
exp ð&V2

y=V2
thiÞ: (4)

We introduce the following dimensionless parameters:

x̂ ¼ x
kyVthi

; f ¼ V

Vthi
: (5)

Then, Eq. (4) reduces to

~ni ¼ &
si

~/
p1=2

ð
df 1þ x̂

f& x̂

# $
exp ð&f2Þ

¼ &si
~/ & si

~/
p1=2

ð
df

x̂
f& x̂

exp ð&f2Þ: (6)

Equation (6) has singularity at x̂ ¼ f, where ETG mode res-
onates with the background ions if the phase velocity of
ETG mode satisfies x=ky ¼ Vy. We can evaluate integral in
Eq. (6) by contour integration in complex f—plane to obtain

~ni ¼ &si
~/ 1þ ip1=2x̂ expð&x̂2Þ
h i

: (7)

Similarly, we calculate impurity density perturbation by
using drift kinetic theory. The impurity density response is
given by

~nI ¼ &sI
~/ 1þ ip1=2A1=2

I Zx̂ expð&AIx̂
2Þ

h i
: (8)

Here, ~/k ¼ ed/k=Te, ~ni ¼ dni=ni0, ~nI ¼ dnI=nIo, si ¼ Te=Ti,
sI ¼ Te=TI, and AI ¼ mI=me.

Then, we can obtain the perturbed density by substitut-
ing of Eqs. (7) and (8) into the quasi-neutrality condition
~nk ¼ dne=ne0 ’ ðni0=ne0Þ ~ni þ ðZnI0=ne0Þ ~nI, giving rise to

~nk +& s( þ isip1=2x̂ expð&x̂2Þ
h

þ sIZef f p1=2A1=2
I x̂ expð&AIx̂

2Þ. ~/k

¼Ke
~/k: (9)

Here, we define s(¼siðni0=ne0ÞþsIZef f , and Zef f +Z2nI0=ne0.

B. Electron dynamics

For electron dynamics, we use the model equations pre-
sented in Ref. 15. These equations describe time evolution of
perturbed electron density, current, and electron temperature
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& d~nk

dt
& dr2

?
~/k

dt
& 1þ ð1þ geÞr2

?
% &

ry
~/k

þ enðhÞry
~/k & ~nk & ~Tek

% &
þrjj ~J jjk ¼ 0; (10)

d ~J jjk
dt
& Ĵ0 jj0ry

~/k þrjjð~/k & ~nk & ~TekÞ ¼ 0; (11)

d

dt
þ 5

3
enðhÞry

# $
~Tek þ ge &

2

3

# $
ry

~/k &
2

3

d~nk

dt
¼ 0: (12)

Here, d=dt¼@=@tþ ~VE!B - ~r, enðhÞ¼½coshþsinhð1=ikyÞrx.,
dJjjk¼&endujjek, ~J jjk¼dJjjk=ence since x=kjj#ci, v(e

¼qece=Ln, Ĵ
0
jj0¼LnrxJjj0=ence, ce is electron thermal veloc-

ity. Here, the co-ordinates x; y are normalized to qe, the par-
allel length scale is normalized to Ln, and the time scale is
normalized to Ln=ce.

III. ELECTRON TRANSPORT IN PEDESTAL

A. Linear theory

One can derive the linear dispersion relation for the ETG
mode by Fourier analyzing Eqs. (10)–(12), giving rise to

ðs( þ k2
?Þx

2þxky 1& 1þ 10s(

3

# $
en& k2

? 1þ geþ
5en

3

# $" #

þ enk2
y ge&

7

3
þ 5en

3
ð1þ s(Þþ 5

3
ð1þ geÞk2

?

' (

’ k2
jj 1þ 5s(

3

# $
& ge&

2

3

# $
ky

x

" #

& kjjkyĴ
0
jj0: (13)

We first solve Eq. (13) in the local limit by treating the paral-
lel compression effect perturbatively (i.e., x ' x( > kjjce or
khqe > en=2q). For khqe > en=2q, the leading order solution
is xk ¼ xr0 þ ic0 þ x1 with

xr0+&
ky

2ðs(þk2
?Þ

1& 1þ10s(

3

# $
en&k2

?q
2
e 1þgeþ

5en

3

# $" #

+&
ky

2ðs(þk2
?Þ
; ð14Þ

c0 +
ky

s( þ k2
?

s(enðge & gthÞ½ .1=2: (15)

The mode becomes unstable when ge > gth, where
gth + 2=3þ 1=4s(en & 1=2s(. For typical edge pedestal pa-
rameters, R=2Ln ¼ 16; Zef f ¼ 1:5, and gth ' 2:1. The magni-
tude of the real frequency shift and growth rate due to
parallel electron motion are given by

xr1 ’
k2
jjky

2s(jx0kj2
ge &

2

3

# $
; (16a)

c1’&
k2
jj

2s(c0

1þ5s(

3

# $
þ2 ge&

2

3

# $
ðs( þ k2

?Þ

" #

þ
kjjkyĴ

0
jj0

2s(c0k
;

(16b)

Equation (16) shows that parallel electron motion sta-
bilizes the ETG mode while the local current gradient in
the pedestal destabilizes it if the condition kjjkyĴ

0
jj0 > 0

is met.
Now, we perform a nonlocal analysis of the linear

ETG mode. In order to calculate the radial mode width of
the mode in the pedestal, we consider the standard balloon-
ing formalism where perpendicular and parallel wave vectors
and curvature terms are represented by k2

x þ k2
y

¼ k2
y 1þ ðŝh& a sin hÞð Þ2, kjj ¼ &ið!en=2qÞ@=@h, and eðhÞ

¼ !en cos hþ ðŝh& a sin hÞsin hð Þ. Here, h is the usual
extended angle co-ordinate in the ballooning formalism,
!en ¼ 2Ln=R, ŝ is the magnetic shear parameter, q is the safety
factor, and a ¼ q2beR=LP + 4q2beR=Ln is the Shafranov
shift parameter. This Shafranov shift parameter turns out to
play a crucial role to obtain electron transport scaling in the
pedestal, as will be shown shortly.

Using the strong ballooning limit where the mode is
localized around h ’ 0, one can derive an approximate radial
eigen-mode equation

A
@2

@h2
þ Bþ Ch2

# $
~/k ¼ 0; (17)

whose coefficients are given by

A ¼ en

2q

# $2

1þ 5Ke

3

# $
x& ge &

2

3

# $
ky

" #)
x;

B ¼ ðKe þ ky
2Þx2 þ xky 1& ky

2 1þ ge þ
5!en

3

# $'

& 1þ 10Ke

3

# $
!en

(
þ !enky

2 ge &
7

3
þ ð1þ KeÞ

5!en

3

'

þ 5

3
ð1þ geÞky

2

(
;

C' ky
2ðŝ & aÞ2x2:

In writing Eq. (17), we expanded finite Larmor radius (FLR)
terms as k2

? ¼ k2
y ½1þ ðŝ & aÞ2h2. and neglected the local

variation of h in curvature drift frequency by assuming
k2

y > ðŝ & a& 1=2Þ !en=ðŝ & aÞ.
Equation (17) is a parabolic cylinder differential equa-

tion whose eigenvalue condition is

B ¼ ið2lþ 1ÞðACÞ1=2: (18)

The solution of Eq. (17) is well-known and given by

~/k ' HnðfÞexpð&f2=2Þ; f ¼ &C=Að Þ1=4h: (19)

Here, HnðfÞ is the Hermite polynomial of order n, and the
condition Re ð&C=AÞ1=2 > 0 must be met to satisfy causal-
ity. Then, the corresponding inverse radial width is

kx
2 + ky

2ðŝ & aÞ2hDhi2; hDhi2 + Reð&A=CÞ1=2: (20)

In the limits ky > !en=2q and k2
y < 1, we get the real fre-

quency and growth rate of the ETG mode as given in
Eqs. (14) and (15). For x ð1þ 5si=3Þ > ðge & 2=3Þky, we
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have A ¼ ð!en=2qÞ2ð1þ 5si=3Þ, the mean width of the eigen-
mode in ballooning space becomes

hDhi2 +!enð1þ 5s(=3Þ½!enðge & gthÞ=s(.
&1=2

! j1þ x0k=c0kj
&2jŝ & aj&1ð2qk2

yÞ
&1: (21)

Substituting Eq. (21) into Eq. (20) leads to an expression
for the corresponding radial mode width (i.e., Dx ' k&1

x ),

k2
x + !en jŝ & ajð1þ 5s(=3Þ1=2=2q½!enðge & gthÞ=s(.

1=2: (22)

In this paper, our main objective is to study ETG driven
turbulent transport in the context of quasilinear theory. The
linear growth rate Eq. (15) and eigenmode width Eq. (22) are
then major ingredients to estimate thermal conductivity and
fluctuation level (i.e., ed/k=Te ' 1=kxLT) of unstable modes.
Generally, the quasilinear linear theory is valid if 1=srelax

< ck < 1=sac (where srelax, sac, and ck are the mean field evo-
lution time, the particle auto-correlation time of a field as
seen by a particle, and the linear growth rate of the unstable
mode, respectively). We refer Ref. 16 to readers for details
on the validity of quasilinear theory. We also remark that the
short scale and fast growing nature of the ETG mode
(ck # cE!B) makes it unaffected by the presence of strong
ExB shear in the H-mode pedestal, so as quasilinear particle
and thermal fluxes due to ETG mode turbulence.

B. Electron thermal transport in the pedestal

We now evaluate the electron thermal transport scaling
in two limiting cases. In both cases, heat transport caused by
the magnetic flutter is negligibly small, which agrees with
previous numerical11,17 and theoretical15,18 studies. The first
case is when ŝ > a. This condition is easily met in low-b,
diverted L-mode discharges where ŝ is large while a is rela-
tively small. In this case, one can derive

ðkxqeÞ
2 + ðŝ=2qÞ½s(!enð1þ 5s(=3Þ=ðge & gthÞ.

1=2 : (23)

This yields the linear mixing length electron thermal diffu-
sion coefficient (ve ¼ ck=kx

2),

ve + jkyqej
q

ŝ

ceq2
e

LTe
: (24)

The quasilinear electron thermal conductivity given by
Eq. (24) is valid when ck > 0 (i.e., ge > gth). We note that ve

in this case represents a standard electron gyro-Bohm scal-
ing. This scaling is identical to the ion gyro-Bohm scaling
that has been derived in Ref. 19 for ion thermal conductivity
(vi) due to ITG turbulence based on full nonlinear considera-
tions. Because of similarity between Eq. (24) and vi in
Ref. 19, features of vi and ve in this regime are almost identi-
cal; (1) they are inversely proportional to the plasma current
via the relation ve / q and thermal transport becomes more
severe at shorter poloidal wavelength via ve / ky.

The striking contrast occurs in the opposite limit, ŝ % a.
This condition is readily met in pedestal formation phase
during which a strong density gradient builds up while

keeping the threshold conditiongth=ge < 1. Then, radial
wave vector is given by

ðkxksÞ2+ 4q !enðge&gthÞ=s(ð Þ&1=2!ð1þ5s(=3Þ1=2j1& ŝ=aj :
(25)

This yields the electron thermal conductivity

ve + vOhkawa
e

jkyj
2s(
ðge & gthÞ
j1& ŝ=aj

1

ð1þ 5s(=3Þ1=2
: (26)

Here, vOhkawa
e ¼ ceks

2=qR. Equation (26) contains three nota-
ble features. First, it represents that Ohkawa scaling in elec-
tron thermal transport can arise in the edge pedestal region
where the condition ŝ % a is satisfied. This is the first ana-
lytic derivation of the appearance of Ohkawa scaling in elec-
tron thermal transport due to ETG turbulence. Our result also
indicates that the Ohkawa scaling can originate from electro-
static ETG turbulence combined with the geometrical effect.
In our work, the finite electron b effect in ve is embodied via
the Shafranov shift parameter a in the ballooning formula-
tion. This implies that the Ohkawa scaling can be realized in
linear electrostatic ETG theory without invoking the nonlin-
ear inverse cascade process.

It is of interest to compare Eq. (26) to neoclassical ion
thermal diffusivity in the pedestal. Taking ion thermal diffu-
sivity in the plateau regime, vi

neo ' qciqi
2=R, we find that

the ratio vi
neo=ve is given by vi

neo=ve ' ðaR=8LnÞðmi=meÞ1=2

% 1,which is smaller than or comparable to unity depending
on edge pedestal conditions. Thus, turbulent electron thermal
conduction will have a larger contribution than that of ions
in the edge pedestal if ion turbulent transport is fully sup-
pressed. This is consistent with the experimental observa-
tions made at ASDEX Upgrade, showing ve is three to ten
times higher than vi inside the pedestal.20

Second, ve is proportional to a local plasma current, i.e.,
ve / 1=q . Combined with the Ohkawa scaling, one notices
that ve is proportional to the ratio of pedestal Greenwald den-
sity to the pedestal density, i.e., ve / Ip=na2, where Ip and
nare the plasma current and density in the pedestal. Thus,
Eq. (26) predicts that the pedestal electron thermal confine-
ment follows the neo-Alcator scaling. A possible implication
of this pedestal confinement scaling is that sE in the H-mode
will have stronger density dependence compared to the
L-mode when it is expressed in terms of empirical scaling
law. This tendency is consistent with the empirical L-mode
and H-mode energy confinement scalings reported in
Refs. 21 and 22, respectively, showing an increase of density
exponent in sE scaling.

The other implication of the pedestal confinement scal-
ing is that electron confinement will deteriorate as a boot-
strap current builds up in the pedestal region. Increase of ve

implies the increase of the turbulence amplitude, resulting in
the generation of anomalous electron viscosity (ljje). Since
this turbulence-driven ljje (hyper-resistivity) is likely to
accelerate magnetic reconnection and ensuing ELM crash,23

ETG driven residual turbulence may enhance ELM activ-
ities. To realize an ELM crash in Ref. 23, they used ljje as
the same value of ve without theoretical justification. In our
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formulation, it is straightforward to obtain ljje and ve by cal-
culating the radial current flux and electron heat flux, result-
ing in

lejj ¼ meh~vrkðn0
~J jje&k þ ~n&kJjj0Þi

’ men0½&ljjedJjj0=dr þ VpinchJjj0.; (27)

Qe ¼ h~vrkðn0
~Te&k þ ~n&kTe0Þi + n0½&vedTe=dr þ VpinchTe.:

(28)

Here, ljje is found to be equal to the value of ve , as in the
case of ITG turbulence24 and given by

ljje ' ve + ceLn
k2
hq

2
ec0k

jx0kj2

****
e/k

Te

****
2

: (29)

By using the mixing length j~/kj ' 1=kxLT and Eq. (25), ljje
and ve become

ljje ¼ ve + vohkawa
e jkyqejg2

eðge & gthÞ: (30)

One may think that Jjj0 in Eq. (27) arises from a bootstrap
current in the pedestal region. Equation (30) shows that ETG
turbulence yields ve ¼ ljje (i.e., electron Prandtl number due
to ETG turbulence is 1) in the quasilinear limit. Thus, one
can interpret that ljje used in Ref. 23 actually originates from
ETG turbulence, providing a theoretical justification of the
assumption made in Ref. 23. This exemplifies the importance
of ETG turbulence in edge pedestal dynamics.

Third, we note that ve is inversely proportional to the
parameter j1& ŝ=aj . This indicates a possible jump of elec-
tron thermal transport as a approaches to ŝ. Even though
small but finite resistivity, which is not considered in this
paper, will prevent such a blow up in electron thermal trans-
port, a significant increase of ve when ŝ ' a is an unavoid-
able consequence of our theory. For instance, if we fix all
parameters and perform ŝ scans, ve will first increase gradu-
ally and show a big jump as a approaches to ŝ. This tendency
reproduces features observed in gyrokinetic ETG simula-
tions12,14 showing a big jump of ve ' 10veGB in shear scans
without noticeable changes of linear mode characteristics.

C. ETG driven particle pinch

The non-adiabaticity of ions and impurities in the edge
pedestal region (Eq. (9)) can induce particle flux by provid-
ing the phase shift between density and potential fluctua-
tions. The particle flux, calculated from Cn 0 h~vrk ~n&ki, is
given by

Cn + p1=2sincekyqe
xr

k?Vthi

# $
exp & x2

r

k2
?V2

thi

 !"

þ sI

si
Zef f A

1=2
i exp& &A1=2

i

sI

si

x2
r

k2
?V2

thi

 !#

j~/kj
2: (31)

For j~/kj ' 1=kxLT , where kx is given by Eq. (25), Eq. (31)
can be written as

Cn +& p1=2njkyqej
vOhkawa

e

4LTe

 !
si

s(

# $3=2 R

LTe

# $1=2

! qs

LTe

# $
1& gth=ge

1þ 5s(=3

# $1=2 1

j1& ŝ=aj

! ðexpð&x̂2Þ þ ðTi=TIÞZef f A
1=2
I expð&AIx̂

2ÞÞ: (32)

Here, AI ¼ mI=mi. Equation (32) represents an ETG driven
thermoelectric pinch in the pedestal. In the absence of
recycled neutral flux entering into the pedestal from wall,
a steady state (i.e., Cn ¼ 0) is set by the condition
ge ' gth ' 2. The density scale length Ln locked to LTe,
which is set by ETG heat balance hLTei ' Qe=veTe, where
hLTei is the mean pedestal temperature scale length and Qe is
the heat flux entering into pedestal from the core.

ETG driven particle pinch may have an influence on the
rapid formation of an edge density pedestal, as pointed out in
Ref. 25 where density pedestal formation time is calculated
based on inward pinch driven by poloidally asymmetric elec-
tric field. In a similar vein, we calculate the pinch time (ped-
estal formation time) due to ETG turbulence as s ¼ n Ln=Cn.
For the purpose of rough estimate, we calculate s for
two sets of representative tokamak plasma parameters:
n ¼ 0:2; 0:7, Te ¼ 0:8; 2:5, B ¼ 2; 5, R ¼ 1:5; 6, ge ¼ 2:0,
Zef f ¼ 2:0, ŝ ¼ 2, a ¼ 2:5, q ¼ 3, si ¼ sI ¼ 1, AI ¼ 6,
Ai ¼ 2, hkyqei ¼ 0:5, Ln=a ¼ 0:04 (where density in
1020m&3, temperature in KeV, and magnetic field in tesla),
resulting in s ¼ 0:1; 20 ms for each case. This showed that
the density pedestal formation occurs within a 100 ls in
present-day medium size tokamaks; whereas in large
machines like ITER, the pedestal formation time will be
slower and typically s % 20 ms.

A scenario for the acceleration of density pedestal for-
mation can be summarized as follows. Ion temperature and
density pedestals start to form first as qi scale turbulence is
quenched by E! B shear. Since ETG turbulence will still be
active in this circumstance, it will drive inward particle
pinch, accelerating the density pedestal formation. This ped-
estal formation continues until it hits the ETG threshold
ge ' gth ' 2. This predicts the pedestal electron temperature
profile must remain near the ETG threshold value, as
observed in ASDEX-U experiments.26

IV. CONCLUSIONS

To summarize, we have presented a theory of electron
turbulent transport driven by electrostatic ETG turbulence in
the edge pedestal region. A summary of the main results of
this paper is as follows:

(i) The electron thermal conductivity exhibits a different
scaling depending on relative values of magnetic
shear (ŝ) vs. the Shafranov shift parameter (a). It
exhibits electron gyro-Bohm-like scaling when ŝ > a,
while follows the Ohkawa scaling (i.e., electron skin
depth size scaling in radial correlation length) when
ŝ < a. This Ohkawa scaling governs electron thermal
transport in the edge pedestal region of H-mode
plasmas.
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(ii) ETG turbulence can induce an inward particle pinch
during the development phase of an edge pedestal due
to the non-adiabatic nature of ions and impurities.
This can lead to the rapid (compared to energy con-
finement time) formation of density pedestal until it
hits the ballooning mode (BM) limit. Our theory natu-
rally predicts that the pedestal electron temperature
profile must remain near the ETG threshold value.

An important message of this paper is that the Ohkawa
scaling in electron thermal transport can be derived using a
linear electrostatic ETG theory when one takes Shafranov
shift effects into account. This prediction may be checked in
existing codes by including the Shafranov shift effect consis-
tently. Our theory also has some experimental implications.
Among them, we pointed out the possible acceleration of
density pedestal formation and the restoration of Alcator
scaling in the pedestal region. The persistence of ge near to
gth in the pedestal region, which is predicted in this paper,
has been observed in some tokamak experiments.24 More
detailed experimental investigation of density pedestal for-
mation process in these lines would be interesting to validate
the present theory.

It is instructive here to discuss possible implications of
the co-existence of KBM and ETG turbulences. ETG turbu-
lence will prevail in pedestal (as long as ge > gth) no matter
whether the KBM threshold condition is met or not. KBMs,
on the other hand, become unstable when a pressure gradient
exceeds some threshold and have a longer spatial scale
(k?&1 > qi) compared to shorter scale (qi > k?&1 > qe)
ETG modes. Once the KBM onset condition is met, ETG
and KBM turbulences may co-exist in the pedestal. Because
of their disparate spatial scales, they will affect to pedestal
profile dynamics in a different way. First, KBM turbulence
may modify the pressure profile on a rather longer scale. The
shorter scale ETG modes will react by this change of pres-
sure profile through the multi-scale interaction, and possibly
be modulated by the KBM modes. How this multi-scale
interaction happens and what would be the consequence of
this have not fully elucidated yet. The physics of this multi-
scale interaction is beyond the scope of this paper and will
be an interesting future subject.

We plan to extend this analysis to include the interac-
tion between ETG and BMs to study back reaction of BM to
ETG via multi-scale interaction. We also plan to investigate
nonlinear saturation of ETG turbulence by generating elec-
tron geodesic acoustic modes. These will be published in
the future. Finally, we remark that our theory and discus-
sions are based on the assumption that particle transport
comes entirely from the ETG mode when TEM is com-
pletely suppressed in the edge pedestal. In actual experi-
ments, however, this ETG turbulence will co-exists with
residualqi scale turbulence, which may affect the pedestal
dynamics. To draw more concrete conclusions, it will be
necessary to perform both experimental fluctuation meas-
urements spanning low to high k with good spatial

resolution and simulations taking ETG and BM dynamics
self-consistently.
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